Innovative Induction Hardening Process with Preheating for Improved Fatigue Performance of Gear Component Author: Z. Li


Contact fatigue and bending fatigue are two main failure modes of steel gears. Surface pitting and spalling are two common contact fatigue failures, which are due to the alternating subsurface shear stresses from the contact load between two gear mates. When a gear is in service under cyclic load, concentrated bending stresses exist at the root fillet, which is the main driver of bending fatigue failures. Heat treatment is required to increase the hardness and strength of gears to meet the required contact and bending fatigue performance. Induction hardening is becoming more popular due to its process consistency, reduced energy consumption, clean environment, and improved product quality. It is well known that an induction hardening process of steel gears can generate compressive residual stresses in the hardened case. Compressive residual stresses in the hardened case of tooth flank benefit the contact fatigue performance, and residual compression in the root fillet benefits the bending fatigue. Due to the complex gear geometry, the residual stress distribution in the hardened case is not uniform, and different induction hardening process can lead to different residual stress pattern and significant variation of fatigue performance. In this paper, an innovative approach is proposed to flexibly control the magnitude of residual stress in the regions of root fillet and tooth flank by using the concept of preheating prior to induction hardening. Using an external spur gear made of AISI 4340 as an example, this concept of innovative process is demonstrated with finite element modeling, using commercial software DANTE.
ISBN: 978-1-61481-081-0 Pages: 13
Discounted member price: 23.00
You could save: 50.0%