Skip to main content
Loading
Home
Store
About
Contact
Create Account
Cart
Facebook
Twitter
LinkedIn
Toggle search
Toggle navigation
Keyword Search
Sign In
Continue Shopping
View Cart
Loading
CustomProperty
Method for Predicting the Dynamic Root Stresses of Helical Gear Teeth
98FTM01
The AGMA dynamic factor has traditionally been treated as a dynamic "load" factor where tooth load is the sum of all of the tooth forces that are applied along the plane of action at any instant in time. Knowing the total load, however, says little about the degree of load sharing or the load position on a tooth when the dynamic load is a maximum. Hence, the dynamic load factor does not directly address the value of either dynamic contact stress or dynamic root stress; quantities that a gear designer should be more interested in. This paper's main focus is the prediction of dynamic root stresses. The approach presented in this paper is a relatively simple methodology that does not use finite elements. The method merges the capabilities of a sophisticated load distribution and dynamic excitation prediction method with a time domain gear dynamics simulation. Because a time integration type of simulation is used, the method can handle both steady state and transient inputs. Inputs that are possible include tooth profile and lead modifications, misalignments, and spacing errors. These can take on average values or can have discrete changes applied from tooth to tooth. Examples of the use of some of these errors are provided in this paper.
Discounted member price:
23.50
Your price:
47.00
You could save:
50.0%
Quantity:
Similar products
01FTM01
01FTM02
01FTM03
01FTM04
01FTM05
01FTM06
Annual Conference
An engaging three-day event you won't want to miss.
Register Now
{1}
##LOC[OK]##
{1}
##LOC[OK]##
##LOC[Cancel]##
{1}
##LOC[OK]##
##LOC[Cancel]##